
Move:
The Next Step in Smart
Contract Programming?

Shivam Sharma

Move: The Next Step in Smart Contract Programming?

Table of Contents

Key Takeaways 3

Introduction 4

Current State of the Market 5
The Role of Software Development Kits 7
Why do we even need another smart contract programming language? 9

Move 11
Genesis 11
Key Features 12
Move’s developer strategy and the EVM’s network effects 16
Current Usage of Move 18

Outlook 19

About Binance Research 21

2

Move: The Next Step in Smart Contract Programming?

Key Takeaways

◆ Move is a new smart contract programming language. Originally designed at
Meta to power the Diem blockchain, the language is now being implemented by
two of the newest projects in the L1 space: Aptos and Sui

◆ The smart contract language landscape is currently dominated by two main
players: Solidity and Rust. To start this report we provide an overview of the
current L1 market and their smart contract language choice, as well as, discuss
the reasons as to why we need a new smart contract programming language in
the first place

◆ We look more closely at Move in the second section of this report, starting with
the genesis of the language. We then go through some of Move’s key features,
including the focus on user-defined assets, its various safety enhancements, as
well as its provisions for developer flexibility

◆ The team behind Move use a two-pronged approach for their developer
onboarding strategy, including targeting those developers who are yet to enter
Web3. We further discuss the perceived network effects of Solidity and the
EVM and whether they might be overstated

3

https://research.binance.com/en/analysis/aptos-sui-report

Move: The Next Step in Smart Contract Programming?

Introduction

Move is a new smart contract programming language that has been rapidly gaining attention
in the past few months. Originally developed at Meta to power the Diem blockchain, Move was
designed as a platform-agnostic language that could be implemented in blockchains of
varying architecture. For example, Aptos, a recently launched Layer-1 (“L1”) project utilizes a
classic version of Move (“core Move”), while Sui, an upcoming L1, will look to implement their
own version, dubbed “Sui Move”.

Move is designed to write smart contracts in a safe and flexible manner and aims to provide
a developer-friendly alternative to the current options, primarily Solidity and Rust. In this
report, we describe the current state of the market, answer the question of why we even need
another smart contract programming language, and provide a thorough overview of the key
features of the Move language.

4

Move: The Next Step in Smart Contract Programming?

Current State of the Market

The smart contract language landscape is currently dominated by two main players: Solidity
and Rust.

Solidity, developed by several Ethereum core contributors, is an
object-oriented, high-level programming language that is used to write
and implement smart contracts on Ethereum and other Ethereum
Virtual Machine (“EVM”) compatible blockchains.

The language was initially proposed in 2014 by Gavin Wood
(ex-Ethereum CTO and founder of Polkadot and Kusama), launched in
2015, and is widely considered to be the first language developed for the
sole purpose of deploying smart contracts. Solidity cites JavaScript, C++
and Python as primary influences.

Rust, originally developed within software company Mozilla, is a
multi-paradigm, general-purpose, low-level programming language
used to write smart contracts and build decentralized applications
(“dApps”) on Solana, and various other blockchains such as NEAR
Protocol and Polkadot.

Unlike Solidity, Rust was not specifically created for smart contract
development, and had been in existence for multiple years prior to the
launch of Solana. Rust also cites C++ as a major influence. Rust itself is
not an executable language, so technically speaking, developers do not
write smart contracts in Rust, but rather via a software development kit
(“SDK”).

5

Move: The Next Step in Smart Contract Programming?

Solidity developers can write and deploy smart contracts on the two largest L1s in the
space; Ethereum and BNB Chain. Together, these chains represent around a quarter of total
crypto market cap (~US$200B out of ~US$800B at the time of writing). BNB Chain is the
largest among the EVM-compatible chains, which also include Avalanche, Fantom and Polygon.
Meanwhile, Rust devs can deploy smart contracts on the likes of Solana, Polkadot and Cosmos.
Weekly commits / active dev numbers for these Rust-based blockchains is notable and
could be seen as positive, given that dev statistics are generally a forward-looking metric. We
also see Haskell in the mix, which Cardano uses (via its native Haskell-based smart contract
language, Plutus). Lastly, we have Move, with Aptos and Sui being the biggest names to be
using this language at present. Dev figures are decent, and not far from the likes of Avalanche.

Figure 1: Solidity and Rust dominate the landscape

Project Market
Cap ($B)

Weekly
Commits

Weekly
Active Devs

Primary Smart Contract
Language(s)

Ethereum 148.8 7,437 1,496 Solidity

BNB Chain 43.8 760 71 Solidity

Cardano 11.1 510 104 Haskell

Polkadot 6.5 9,716 707 Rust / ink!

Solana 5.1 1,388 259 Rust

Avalanche 3.9 242 35 Solidity

Cosmos 2.9 2,182 446 Rust / Ethermint

NEAR 1.6 1,407 110 Rust / JavaScript

Aptos 0.5 56 23 Move

Sui n/a 59 24 Move
Source: CoinMarketCap / Gokustats

6

Move: The Next Step in Smart Contract Programming?

The Role of Software Development Kits

Software Development Kits are integrated kits of software development tools that help
developers in building blockchain solutions on a given platform. SDKs usually include tools
such as programming language compilers, code libraries, testing / analytical tools, database
development environments, debuggers etc. One or many different Application Programming
Interfaces (“APIs”) will also generally feature in a SDK, as APIs help facilitate communication
between the different tools mentioned previously.

Broadly speaking, we can think about two groups of SDKs. On one hand, we have solutions
like the Cosmos SDK, which is an open-source framework for building blockchains
themselves. These chains are generally referred to as application-specific blockchains and
there are many notable examples of chains built in this manner, including the original Binance
Chain in 2019.

On the other hand, we have tools like the JavaScript SDK, released earlier this year by the
NEAR Protocol(1). This tool kit essentially allows JavaScript developers to build dApps on the
NEAR Protocol, without learning Rust. While this sounds like it could be a significant step
forward, particularly considering that there are approximately 16.5m active JavaScript
developers relative to around 18K Web3 developers at this time, numbers for NEAR Protocol
have remained relatively stable and in a slight downward trajectory since the SDKs’ launch.
While it is still early, and this is just one example, there is a thought in the community that to
genuinely develop a high-quality and safe dApp, you should really be working directly in Rust,
rather than via the SDK. Nonetheless, this is a developing area within the smart-contract
language debate and one that should be considered when thinking about the topic.

7

https://academy.binance.com/en/articles/the-evolution-of-the-internet-web-3-0-explained

Move: The Next Step in Smart Contract Programming?

Figure 2: NEAR Protocol developer numbers have been largely stable for a few months

Source: Gokustats

8

Move: The Next Step in Smart Contract Programming?

Why do we even need another smart contract programming
language?

Let’s set the scene. As we can see in Figure 3, the origins of the story lie in the first major
event in modern crypto space - the release of the Bitcoin whitepaper on 31 October 2008(2).
In our extremely abbreviated timeline, the next major step change in the crypto world would be
the advent of smart contracts through the launch of Ethereum and Solidity in 2015. Note that
the Rust language first debuted in 2010, however, this was irrelevant to the nascent crypto
industry at the time. Rust was launched as a general-purpose language and had been in
development since 2006 - almost 10 years before the world knew anything about smart
contracts.

Figure 3: A very abbreviated timeline of the crypto space

Source: Binance Research

The launch of Ethereum / Solidity is essentially the origin story of dApps in the crypto world,
and in addition to opening up a whole new dimension for creators and builders, it also opened
up a new avenue for hackers and exploiters. Just over a year after launch, the young
Ethereum community faced a tremendous test; “The DAO” hack. The DAO was a
decentralized autonomous organization (“DAO”) - the first of its kind - and was launched in
2016 on Ethereum. After raising ~US$150m through a token sale, The DAO was hacked due to
vulnerabilities in the code and ultimately, the Ethereum blockchain went through a contentious
hard fork which resulted in the divergence of the network into two separate chains: Ethereum
Classic and Ethereum.

9

https://coinmarketcap.com/alexandria/article/a-history-of-the-dao-hack
https://research.binance.com/en/analysis/dao-report-2022

Move: The Next Step in Smart Contract Programming?

Why is this relevant to us? Because the hack involved a reentrancy exploit, which is possible
due to the way that code is structured in Solidity. This was not the only reentrancy exploit
experienced on an EVM-chain, with numerous multi-million dollar examples of similar attacks
across the years(3). The Move language does not demonstrate the same vulnerabilities to
reentrancy exploits (explained in more detail in the Move section), which should hopefully
have a positive effect on the number of exploits experienced on chains that utilize the
language.

Fast-forward to 2020, and we see the relatively quiet launch of Solana, followed by the famous
DeFi Summer, which was kickstarted by the liquidity mining program of Ethereum-based dApp
- Compound Finance. After this period of DeFi-focused activity and increasing market euphoria
through 2021, we saw a period of NFT-mania with some blue-chips selling for millions of
dollars, all the while garnering significant media and Hollywood attention (Anyone remember
Jimmy Fallon telling us about his Bored Ape earlier this year?).

So what are we implicitly saying by continuing to build this new industry largely using
Solidity and Rust? That the two best, most suitable and safest languages to take forward this
US$1tn+ industry are Rust (a general-purpose language originally developed before the Bitcoin
whitepaper) and Solidity (launched at a time before anyone understood the true possibilities of
smart contracts and dApps)? Even if that is the case, we would argue that it is worth learning
about the latest player to join the race and develop an understanding of some of the latest
cutting-edge features they may bring to the table. Here comes Move…

“Are we really saying that the two best, most suitable, and
safest languages to take forward this US$1tn+ industry are

Rust (a general-purpose language developed before the
Bitcoin whitepaper) and Solidity (launched before anyone

understood the true possibility of smart contracts and
dApps)?”

10

Move: The Next Step in Smart Contract Programming?

Move

“Move is a language for programming with scarcity” is how Sam Blackshear, the creator of
Move, puts it. Originally created for Meta’s Diem (formerly Libra) project, Move is a
platform-agnostic, Rust-based programming language for implementing safe and flexible
smart contracts and custom transactions.

Genesis

When at Meta, Sam and his team took a close look at the options available to them to build the
Diem blockchain with, and they realized a couple of key things.

1. Looking at the type of programs that developers are trying to write, they are all to do
with assets. Yet, when we look at the conventional programming languages that
developers are using - there is no concept or vocabulary to describe assets. There is
essentially no type nor value nor representation of an asset in these languages. Looking
at Solidity for example, the way you represent assets is through hash tables and
bytes - this makes it very hard to do the things you want to do with smart contracts and
involves lots of tweaking and customisation, creating complexity and thus
vulnerabilities that could be exploited

2. They realized that if you are going to build using Solidity / EVM for example, because of
the features that are natively baked into the languages e.g. transaction format or
address format, you will inherit many inherent limitations and operate somewhat
similarly to the EVM. The team behind Move wanted their language and virtual
machine (“VM”) to be much more barebone, minimal and platform-agnostic. The team
recognized that this is a rapidly growing industry and technology, and builders should
have more flexibility and be able to experiment cross-platform

With this in mind, the team decided that building their own smart contract programming
language was a better choice than to utilize existing options, especially for the long term. The
purpose of Move was to build a language centered around the idea of programming with
scarcity, while providing a structured representation of assets in a safe environment.

11

Move: The Next Step in Smart Contract Programming?

Key Features

First-Class Resources

As previously stated, Move has been designed very specifically to deal with digital assets.
One of the novel features of Move is the ability to define custom resource types, taking
inspiration from linear logic i.e. the idea that “a resource can never be copied or implicitly
discarded, only moved between program storage locations”(4).

What does this mean in practice?

The concept of resources allows developers to encode safe, yet customizable assets (i.e.
coins, tokens, NFTs etc). Developers can define any variable through combinations of four
distinct attributes: Copy, Key (index), Store and Drop (discard). After the variable is declared as
a Resource, it is only editable by Key and Store, and not Copy nor Drop i.e. the Move language
syntax itself ensures the scarcity of a resource.

Again, to reiterate, this means that Move lets developers work directly with well-defined assets
which correspond to the scarcity characteristics of physical assets. This is in contrast to
Solidity / EVM for example, whereby assets are represented as entries in hash maps, with asset
updates working through updating entries in a map (instead of simply passing an asset over
like in Move). Even to those not completely familiar with programming languages, it should
hopefully be clear that the Solidity / EVM method seems to add a level of complexity and
abstraction that does not feature in the Move / Move VM method of representing assets.

Safety

❖ Bytecode Verifier -
➢ Move’s bytecode verifier is where the bytecode gets analyzed before execution.

This includes tests for universal safety properties like type safety, memory
safety and resource safety. It is a set of lightweight tests that are run on-chain
that enforce general safety properties that must hold for any well-formed
Move program. No Move program / smart contract can be executed before
passing through the bytecode verifier

➢ Similar checks are also performed in the source code compiler. However, it is

12

Move: The Next Step in Smart Contract Programming?

beneficial to perform these checks on the bytecode itself too, because (1) the
compiler is an expensive and large piece of software and better run off-chain,
and (2) the bytecode verifier prevents someone from writing bytecode manually
to get around the safety features in-built into Move

➢ This essentially eliminates the compiler from the trusted computing base.
This means that the developers working in Move do not have to worry about
possible failures or attacks in compilers. Given the compiler is much larger than
the bytecode verifier, this could be a significant reduction in attack surface area

➢ Similar concepts exist in the Java VM and Common Language Runtime (the VM
component of Microsoft’s .net)

Figure 4: Move’s Compilation includes checks on both the source code and the bytecode

Source: Binance Research

❖ The Move Prover -
➢ Move also introduces a formal smart contract verification tool - the Move

Prover (“MVP”). Formal verification is the process of verifying the reliability and
correctness of a program with respect to a formal specification

➢ The MVP was very closely developed alongside the Move language and allows
developers to mathematically verify their code in an automatic and efficient
fashion. The MVP runs off-chain and checks user-defined and
application-specific safety properties

➢ Similar to the bytecode verifier, the MVP also analyzes the bytecode directly, and
thus also benefits from the additional safety check this provides. The MVP
provides more sophisticated and inter-procedural, cross-module checks,
when compared to the more isolated focus of the bytecode verifier

➢ In terms of comparisons, there is some work around Solidity smart contract
verification, but due to properties like dynamic dispatch (discussed more
below), this is a much more difficult task in Solidity, when compared to Move

13

Move: The Next Step in Smart Contract Programming?

➢ One interesting point is that the inclusion of the MVP might help to reduce the
audit burden of smart contracts relative to other languages, where formal
verification might not be possible / harder e.g. Solidity. For example, developers
can use the Move Prover to specify and verify the properties that are most
important, and the auditor’s job is reduced to making sure that the
specifications are strong and make sense and the Prover will do the rest. While
this certainly will not eliminate the need for auditing, it can be an interesting
time saver, particularly given how lengthy development cycles traditionally are

Figure 5: Move’s unique safety features might help reduce the scope of smart contract
audits

Source: OttserSec

❖ No Dynamic Dispatch -
➢ Move as a language is designed to not support dynamic dispatch. Technically

speaking, this means that the code execution logic will be determined at
compile time (statically) instead of at runtime (dynamically)

➢ For example, in Solidity, when contract 1 calls contract 2’s function, contract
2 can run code that was unanticipated by contract 1’s developer, which can
lead to re-entrancy vulnerabilities (contract 1 accidentally executes contract
2’s function to withdraw money before actually deducting balances from the
account). Reentrancy exploits (as mentioned above) have been some of the

14

Move: The Next Step in Smart Contract Programming?

most notable category of hacks that have occurred in EVM chains over the last
few years

➢ This type of reentrancy exploit is not possible when using Move due to the
static nature of the language. Additionally, it also makes it easy for
verification tools to more precisely consider the effects of a procedure call
without performing a complex call graph construction analysis. This helps in
the verification ability of Move code and could be another factor helping reduce
the audit burden of Move smart contracts

Flexibility

One of the key features of the language that Sam and the team have stressed is the relative
minimalism of it. For example, Move does not have accounts or any sort of native tokens (or
any token at all for that matter) or cryptography baked into the language. The language is
intentionally minimal so that it can be used in a cross-platform way. Developers should be able
to use Move in whatever blockchain they want and make their own decisions on what their
transactions will look like, what consensus mechanism they will use, what type of cryptography
they will use etc.

The team behind Move recognize that crypto is an emerging space and want to provide
developers with the flexibility they need to experiment and find the best solutions for their
vision. They also recognize that this is a great way to develop a meaningful cross-platform
community for the language, which will ultimately be the most important factor when thinking
about the medium to long-term success of it.

One example we already have of this is the difference in implementation by the two biggest
projects using the language so far. While Aptos utilizes so-called “core Move”, Sui uses “Sui
Move”(6). Sui Move has a few technical differences from some of the core Move design choices,
which allow Sui to fully leverage the flexibility of the language and take advantage of the
object-oriented architecture of the Sui L1. This further illustrates how the Move team has
designed the language so that it can be tailored to the specific needs of different projects.

15

Move: The Next Step in Smart Contract Programming?

Move’s developer strategy and the EVM’s network effects

The team behind Move are targeting a two-pronged approach in terms of their developer
strategy. In the short-term, they aim to attract developers familiar with other smart
contracting platforms. Some of the more curious and well-informed of this group are already
aware of Move and have perhaps already experimented with the language. Both Aptos and Sui
have been active in organizing events, AMAs, hackathons, developer calls etc. to help increase
the visibility of the language.

In the medium to long term, their primary goal is to grow the proverbial pie through
attracting those that have not touched blockchain programming before. The idea behind
Move is that if you are a product builder, you do not have to be an expert in smart contracts nor
blockchain in order to pick up the language and write quality Web3 code. As a new developer,
you do not have to worry about reentrancy nor dynamic behaviors and can try your hand at
Web3 with fewer concerns. Move wants to minimize the possible attack surface with its
unique properties and make it friendly and accessible for those developers coming from
Web2 programming to adjust to Web3. If some things are fundamentally tricky about smart
contracts, Move aims to take those away and help the new developer with the verifier, the MVP
and the simple user-defined asset-focus of the language to guide them to the right path and
onboard them into the crypto world.

One thing we should discuss here is the commonly cited idea among many in Crypto Twitter;
that the network effects of Solidity and the EVM are insurmountable due to how many of
the top blockchains utilize it. This is a frequent argument against the introduction and
chances of success of newer languages like Move. However, looking slightly deeper into the
facts and the picture becomes more muddy. As we can see in Figure 6, Web3 developers
make up a tiny fraction of the overall market, with some reputable estimates showing only
< 0.1% of the overall developer market active in the space. From this number, 4-6k are
generally estimated to be active Solidity / EVM developers. When we look at this number and
compare with the amount of developers there are overall, we can definitely see how a new
smart contract language has the room to grow and expand as the industry itself grows. It
further highlights how the network effects of the Solidity / EVM ecosystem might be somewhat
overstated and how new languages like Move definitely have opportunity for market share.

16

Move: The Next Step in Smart Contract Programming?

Figure 6: Web3 Developers vs. other coding languages

Source: Electric Capital, Binance Research

The idea that smart contract programmers will get better on their own using the same
languages as always makes little sense - when more developers enter the market, the average
level of knowledge goes down, not up. Given it is not reasonable to expect new developers
to be more informed or technically proficient, one thing we can do from our side is to bring
in safer languages, better tooling and bake in more safety checks at the base level. This is
what Move aims to do.

“The idea that smart contract programmers will get better
on their own using the same languages as always makes
little sense - when more developers enter the market, the

average level of knowledge goes down, not up. ”

17

Move: The Next Step in Smart Contract Programming?

Current Usage of Move

The current usage of Move is naturally relatively limited, as would be expected from a new
programming language. At present, Move is utilized by:

❖ Starcoin - a proof-of-work blockchain which was the first public blockchain to support
Move

❖ Aptos - one of the major new players in the L1 space. Aptos’ mainnet launched in
October 2022

❖ Sui - a notable upcoming L1 project with mainnet expected late 2022 / early-2023
➢ You can check out our latest report on Aptos and Sui here to learn more about

the L1 projects and what they aim to bring to the table

❖ 0L - a fork of the original Diem blockchain

❖ Celo - a partnership between Celo and Mysten Labs was announced in September
2021(5) which would add support for Move to the Celo L1. The support is likely to be
deployed after Sui’s mainnet launch

18

https://research.binance.com/en/analysis/aptos-sui-report

Move: The Next Step in Smart Contract Programming?

Outlook

When thinking about introducing a new smart contract programming language, there are
essentially two high level areas to think about. The first part is the design - how does it work?
What is it designed to do? Is this a major improvement from the other options in the
market? This first part can be tackled without too much battle-testing and is something that
the team behind Move is confident in. The development of the language has been worked on by
some of the brightest engineers and developers in the space, owing to Move’s roots in Meta.
The next major area to be concerned with is the actual implementation and battle testing -
that can only be done with time. Move’s founding team talks about their ‘second mover’
advantage over earlier smart contract languages and believe that despite the huge inertia there
is around existing ecosystems, given some time and an opportunity for Move-based chains to
showcase themselves, they can win some market share. In particular, their focus on targeting
those developers that may not know much about crypto or blockchain and trying to
simplify their onboarding could be an important catalyst for them.

Another point worth noting is that the team at Move stresses that mainstream smart contract
languages do not currently satisfy all of the requirements that are needed from a smart
contract language in today's market. As we discussed previously, Solidity was founded and
launched before anyone understood the real possibilities of smart contracts and dApps, while
Rust is a general-purpose language developed before the Bitcoin whitepaper. Yes, there are
methods and ways to tweak things in these languages to address their shortcomings, but
ultimately every time you do this you take something very complicated and add further
restrictions to it. Often these tweaks mean that a developer will not be able to leverage existing
tooling, further restricting experimentation and flexibility in this emerging space. In this
setting, where we care so much about correctness and safety, simplicity is crucial. Thus,
the Move team believes that it makes more sense to build and use something that has the
desired properties you want for the future, rather than repeatedly modifying existing tools
which might be fundamentally unsuitable for the job.

It will be very interesting to see if Move can continue to generate buzz within the community
and how much developer onboarding the language can achieve in the medium term. We will
keep a close eye on how things progress and continue to report on the latest developments.

19

Move: The Next Step in Smart Contract Programming?

References

1) https://near.org/blog/near-releases-javascript-sdk-bringing-web3-to-20-million-develo
pers/

2) https://bitcoin.org/bitcoin.pdf
3) https://github.com/pcaversaccio/reentrancy-attacks
4) https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-

programmable-resources/2020-05-26.pdf
5) https://docs.sui.io/learn/sui-move-diffs
6) https://www.businesswire.com/news/home/20210921006104/en/Celo-Sets-Sights-O

n-Becoming-Fastest-EVM-Chain-Through-Collaboration-With-Mysten-Labs

20

https://near.org/blog/near-releases-javascript-sdk-bringing-web3-to-20-million-developers/
https://near.org/blog/near-releases-javascript-sdk-bringing-web3-to-20-million-developers/
https://bitcoin.org/bitcoin.pdf
https://github.com/pcaversaccio/reentrancy-attacks
https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf
https://docs.sui.io/learn/sui-move-diffs
https://www.businesswire.com/news/home/20210921006104/en/Celo-Sets-Sights-On-Becoming-Fastest-EVM-Chain-Through-Collaboration-With-Mysten-Labs
https://www.businesswire.com/news/home/20210921006104/en/Celo-Sets-Sights-On-Becoming-Fastest-EVM-Chain-Through-Collaboration-With-Mysten-Labs

Move: The Next Step in Smart Contract Programming?

About Binance Research
Binance Research is the research arm of Binance, the world's leading cryptocurrency
exchange. The team is committed to delivering objective, independent, and comprehensive
analysis and aims to be the thought leader in the crypto space. Our analysts publish insightful
thought pieces regularly on topics related but not limited to, the crypto ecosystem, blockchain
technologies, and the latest market themes.

Shivam Sharma, Macro Researcher

Shivam is currently working for Binance as Macro Researcher. Prior to joining Binance, he
worked as an Investment Banking Associate / Analyst at Bank of America on the Debt Capital
Markets desk, specializing in European Financial Institutions. Shivam holds a BSc Economics
degree from the London School of Economics & Political Science (“LSE”) and has been involved
in the cryptocurrency space since 2017.

21

Move: The Next Step in Smart Contract Programming?

Read more
https://research.binance.com/en/analysis

Share your feedback
https://tinyurl.com/bnresearchfeedback

General Disclosure: This material is prepared by Binance Research and is not intended to be relied upon as a forecast
or investment advice, and is not a recommendation, offer or solicitation to buy or sell any securities, cryptocurrencies
or to adopt any investment strategy. The use of terminology and the views expressed are intended to promote
understanding and the responsible development of the sector and should not be interpreted as definitive legal views
or those of Binance. The opinions expressed are as of the date shown above and are the opinions of the writer, they
may change as subsequent conditions vary. The information and opinions contained in this material are derived from
proprietary and non-proprietary sources deemed by Binance Research to be reliable, are not necessarily all-inclusive
and are not guaranteed as to accuracy. As such, no warranty of accuracy or reliability is given and no responsibility
arising in any other way for errors and omissions (including responsibility to any person by reason of negligence) is
accepted by Binance. This material may contain ’forward looking’ information that is not purely historical in nature.
Such information may include, among other things, projections and forecasts. There is no guarantee that any
forecasts made will come to pass. Reliance upon information in this material is at the sole discretion of the reader.
This material is intended for information purposes only and does not constitute investment advice or an offer or
solicitation to purchase or sell in any securities, cryptocurrencies or any investment strategy nor shall any securities or
cryptocurrency be offered or sold to any person in any jurisdiction in which an offer, solicitation, purchase or sale
would be unlawful under the laws of such jurisdiction. Investment involves risks.

22

https://research.binance.com/en/analysis
https://tinyurl.com/bnresearchfeedback

